Comparison method for community detection on brain networks from neuroimaging data
نویسندگان
چکیده
The brain is a complex system consisting of regions dedicated to different brain functions, and higher cognitive functions are realized via information flow between distant brain areas communicating with each other. As such, it is natural to shift towards brain network analysis from mapping of brain functions, for deeper understanding of the brain system. The graph theoretical network metrics measure global or local properties of network topology, but they do not provide any information about the intermediate scale of the network. Community structure analysis is a useful approach to investigate the mesoscale organization of brain network. However, the community detection schemes are yet to be established. In this paper, we propose a method to compare different community detection schemes for neuroimaging data from multiple subjects. To the best of our knowledge, our method is the first attempt to evaluate community detection from multiple-subject data without “ground truth” community and any assumptions about the original network features. To show its feasibility, three community detection algorithms and three different brain atlases were examined using resting-state fMRI functional networks. As it is crucial to find a single group-based community structure as a representative for a group of subjects to allow discussion about brain areas and connections in different conditions on common ground, a number of community detection schemes based on different approaches have been proposed. A non-parametric permutation test on similarity between group-based community structures and individual community structures was used to determine which algorithm or atlas provided the best representative structure of the group. The Normalized Mutual Information (NMI) was computed to measure the similarity between the community structures. We also discuss further issues on community detection using the proposed method.
منابع مشابه
Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold
Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, includi...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملMulti-scale detection of hierarchical community architecture in structural and functional brain networks
Community detection algorithms have been widely used to study the organization of complex systems like the brain, which can be represented as graphs or networks of nodes (brain regions) connected by edges (functional or structural connections). A principal appeal of these techniques is their ability to identify a partition of brain regions (or nodes) into clusters (or communities), where nodes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Network Science
دوره 1 شماره
صفحات -
تاریخ انتشار 2016